A team of scientists at the University of Illinois Urbana-Champaign developed a bioprocess using engineered yeast that completely and efficiently converted plant matter consisting of acetate and xylose into high-value bioproducts.

A team of scientists at the University of Illinois Urbana-Champaign developed a bioprocess using engineered yeast that completely and efficiently converted plant matter consisting of acetate and xylose into high-value bioproducts.

Lignocellulose, the woody material that gives plant cells their structure, is the most abundant raw material on Earth and has long been viewed as a source of renewable energy.

It contains primarily acetate and the sugars glucose and xylose, all of which are released during decomposition.

In a paper published in Nature Communications, the team described its work, which offers a viable method for overcoming one of the major hurdles impeding the commercialization of lignocellulosic biofuels – the toxicity of acetate to fermenting microbes such as yeast.

LEAVE A REPLY

Please enter your comment!
Please enter your name here